
Undergraduate Computer Science

Assessment Report - 2015/2016

Identifying Information

Name of Program: Computer Science

Type of Program: Major

College of Arts and Sciences Division: Sciences

Name/Title/Email of Submitter: Sami Rollins, Professor and (outgoing) Chair,
srollins@cs.usfca.edu

Name/Email of Additional Individuals who Should Receive Feedback: David
Wolber, Professor and (incoming) Chair, wolberd@usfca.edu

Mission Statement

Students who graduate with a Bachelor of Science (B.S.) degree in Computer Science
will be prepared for both graduate school and for software development careers. The
curriculum provides a solid base in computer science fundamentals that includes
software design and development, problem solving and debugging, theoretical and
mathematical foundations, computer systems, and system software.

Program Learning Outcomes

We have updated our PROJECT program learning outcome to incorporate feedback
received on our December 2015 report.

● THEORY: Explain and analyze standard computer science algorithms and
describe and analyze theoretical aspects of various programming languages.

● APPLICATION: Apply problem-solving skills to implement medium- and large-
scale programs in a variety of programming languages.

● SYSTEMS: Describe the interactions between low-level hardware, operating
systems, and applications.

● PROJECT: Demonstrate effective communication and organization as part of a
team of software developers or researchers collaborating on a large computer
program.

Brief Summary of Most Recent Assessment Plan

We are rebooting assessment in Computer Science and have not had a structured plan
in place for a few years.

Academic Program Review

Date of most recent Academic Program Review’s External Reviewer Visit:
November 18-20, 2015

Date of most recent Action Plan Meeting: May 16, 2016

Brief Summary of the most recent Action Plan: The action plan for our 2015/2016
program review is still in progress.

Curricular Maps

The curricular maps for our undergraduate program are as follows:

Our courses curricular map is also available at:
https://docs.google.com/spreadsheets/d/1_r8xAepHOVYfDNBwdqf1jo0y1UgGFgLKEgz4
4QZMqjo/edit?usp=sharing

Our ILO curricular map is also available at:
https://docs.google.com/spreadsheets/d/1bMG77J2OhSLLezGDCDazR2dPvdeH1PJCE
3QBbIsWR9A/edit?usp=sharing

ILO Curricular Map

 PLO1 PLO2 PLO3 PLO4

Institutional Learning
Outcomes X Program
Learning Outcomes

THEORY: Explain and
analyze standard
computer science
algorithms and describe
and analyze theoretical
aspects of various
programming languages.

APPLICATION: Apply
problem-solving skills to
implement medium- and
large- scale programs in
a variety of programming
languages.

SYSTEMS: Describe the
interactions between
low-level hardware,
operating systems, and
applications.

PROJECT: Demonstrate
effective communication
and organization as part
of a team of software
developers or
researchers
collaborating on a large
computer program.

Institutional Learning
Outcomes
1. Students reflect on
and analyze their
attitudes, beliefs, values,
and assumptions about
diverse communities and
cultures and contribute
to the common good.
2. Students explain and
apply disciplinary
concepts, practices, and
ethics of their chosen
academic discipline in
diverse communities. X X
3. Students construct,
interpret, analyze, and
evaluate information and
ideas derived from a
multitude of sources. X X X X
4. Students
communicate effectively
in written and oral forms
to interact within their
personal and
professional
communities. X
5. Students use
technology to access
and communicate
information in their
personal and
professional lives. X X X X
6. Students use multiple
methods of inquiry and
research processes to
answer questions and
solve problems. X X X X
7. Students describe,
analyze, and evaluate
global
interconnectedness in
social, economic,
environmental and
political systems that
shape diverse groups
within the San Francisco
Bay Area and the world.

Courses Curricular Map

 PLO1 PLO2 PLO3 PLO4

Program Learning
Outcomes X Courses

THEORY: Explain and
analyze standard
computer science
algorithms and describe
and analyze theoretical
aspects of various
programming languages.

APPLICATION: Apply
problem-solving skills to
implement medium- and
large- scale programs in
a variety of programming
languages.

SYSTEMS: Describe the
interactions between
low-level hardware,
operating systems, and
applications.

PROJECT: Demonstrate
effective communication
and organization as part
of a team of software
developers or
researchers
collaborating on a large
computer program.

Courses or Program
Requirement
110: Introduction to
Computer Science I I I I I
112: Introduction to
Computer Science I I D I I
212: Software
Development D D D
SYSTEMS: D

220: Introduction to
Parallel Programming

221: C and Systems
Programming

245: Data Structures and
Algorithms D D D
315: Computer
Architecture M
326: Operating Systems M
THEORY: M

345: Programming
Language Paradigms

411: Automata Theory
414: Compilers

APPLICATIONS: M
333: Introduction to
Database Systems

336: Computer Networks
360: Data Visualization

419: Computer Graphics
420: Game Engineering

451: Data Mining
480: Computers and

Society
398/498: Directed
Reading and Research D D
490: Senior Team
Project M M

 Key:
 I = Introductory
 D = Developing
 M = Mastery

Methods

Questions

This year, we chose to collect data regarding the following question:

Are students prepared to implement a large-scale project in the CS 212 -
Software Development course?

Though CS 212 is designed as a second-year course, for a variety of reasons students
end up taking the course at different points in their program. Because of this, in this
year’s assessment report we explore how the course learning outcomes are met, and
then explore several indirect assessment measures to evaluate whether the course may
be modified to better meet the needs of our students.

This question is not directly related to our most recent program review as we are in a
program review year and did not have enough information from the program review
before developing our plan for this year.

This question is related to PLO 2: APPLICATION: Apply problem-solving skills to
implement medium- and large- scale programs in a variety of programming languages.

The direct method of assessment we employ is to examine solutions to homework and
project assignments.

CS 212 Course Overview

CS 212 is designed as a sophomore-level course that requires students to implement a
large piece of software that is well designed and efficient. In 2015/2016, three instructors
taught three individual sections of the course. The structure and requirements for each
section were almost identical, and the three professors collaborated to ensure that
students were required to complete roughly the same assignments across all sections.

For most course learning outcomes outlined below, students implement an extremely
structured and small programming homework assignment as well as a large
programming project. For some course learning outcomes, the student implements only
a project. Each project builds on the previous and, at the end of the semester,
successful students will have iteratively built a single large piece of software typically
comprised of about 2,000 lines of source code.

Mastery Learning

CS 212 uses a mastery learning approach. Though homework assignments have strict
deadlines, students work on the project assignments until they are complete, pass all
test cases, and meet the high standards of code design set by the instructor. Each
project is typically submitted two to three times. Each student meets with the instructor
individually for a code review. During code review the student receives feedback and
then must implement changes based on the instructor’s suggestions.

If a student completes a project assignment then he/she has demonstrated mastery of
the topic and receives full credit minus any deductions for small things like not following
directions. Some students may not complete all projects. A student who fails to complete
all projects is graded on the number of projects completed. In essence, the goal is for a
student who earns a C to have an A-level understanding of 75% of the topics rather than
a C-level understanding of all topics as may be typical.

Course Learning Outcomes

The course learning outcomes (CLOs) for CS 212 are as follows:

● CLO1: Implement a program that uses several complex data structures.
● CLO2: Implement a program that uses threads and concurrency.
● CLO3: Implement a program that uses introductory elements of web applications,

including HTML.
● CLO4: Implement a program that uses advanced features of web applications,

including a web server and relational database.

Rubrics
As described above, students complete one small programming homework and a large
programming project for most CLOs, with the exception of CLO4. Each programming project
is revised and resubmitted until it demonstrates mastery.

The rubric used to evaluate CLOSs 1, 2, and 3 is as follows:

Unsatisfactory Amateur Acceptable Exceptional

The student’s
homework solution is
incomplete. It does not
pass all test cases
and/or demonstrates
poor design practices.
The student did not
submit a project or
submitted a project
that did not pass most
test cases.

The student’s
homework solution
passes all test cases
and demonstrates
good design practices.
The student did not
submit a project or
submitted a project
that did not pass most
test cases.

The student’s
homework solution is
incomplete. It does not
pass all test cases
and/or demonstrates
poor design practices.
The student’s project
solution only passes
most test cases or has
some minor design
flaws.

The student’s
homework solution
passes all test cases
and demonstrates
good design practices.
The student’s project
solution passes all test
cases and
demonstrates
appropriate design
practices.

The rubric used to evaluate CLO 4 is as follows:

Unsatisfactory Amateur Acceptable Exceptional

The student did not
attempt the project.

The student’s solution
correctly implemented
some features but was
missing many features
or had significant
design flaws.

The student’s solution
implemented most
features but contained
minor design flaws.

The student’s solution
implemented all
features and was well
designed.

Results

The following three tables illustrate the results of our direct assessment for the three
sections of the course offered in 2015/2016.

Table 1: Direct assessment results for Fall Section 01.

Unsatisfactory

Amateur

Acceptable

Exceptional

 N Freq Pct Freq Pct Freq Pct Freq Pct

CLO1 25 1 4% 0 0% 2 8% 22 88%

CLO2 25 2 8% 2 8% 3 12% 18 72%

CLO3 25 6 24% 6 24% 3 12% 10 40%

CLO4 25 15 60% 3 12% 6 24% 1 4%

Table 2: Direct assessment results for Fall Section 02.

Unsatisfactory

Amateur

Acceptable

Exceptional

 N Freq Pct Freq Pct Freq Pct Freq Pct

CLO1 15 1 6.6% 0 0% 1 6.6% 13 86.6%

CLO2 15 3 20% 1 6.6% 5 33.3% 6 40%

CLO3 15 6 40% 3 20% 1 6.6% 5 33.3%

CLO4 15 10 66.6% 4 26.6% 1 6.6% 0 0%

Table 3: Direct assessment results for Spring Section 01.

Unsatisfactory

Amateur

Acceptable

Exceptional

 N Freq Pct Freq Pct Freq Pct Freq Pct

CLO1 27 1 3.7% 1 3.7% 2 7.4% 23 85.2%

CLO2 27 2 7.4% 0 0% 3 11.1% 22 81.5%

CLO3 27 2 7.4% 3 11.1% 2 7.4% 20 74.1%

CLO4 27 7 25.9% 6 22.2% 10 37.0% 4 14.8%

We have also considered several indirect measures of assessment as follows.

Figure 1: Student grade in CS 212 and student combined GPA for CS 110 and 112.

Figure 1 illustrates, for each student, his/her final grade in CS 212 and his/her combine
GPA in our 110/112 introductory sequence. We expected to find a correlation between
the intro sequence GPA and the CS 212 grade, however no such correlation is obvious.

Figure 2: Student grade in CS 212 and number of CS courses completed prior to
CS 212.

Figure 2 illustrates, for each student, his/her final grade in CS 212 and the number of CS
courses taken prior to CS 212. This number does not include concurrent CS courses
and does include courses that the student did not pass. Again, we expected to see
higher 212 grades for students who had completed more CS classes prior to 212,
however this was not the case.

We have long advised students that though CS 245 - Data Structures is not a strict
prerequisite of CS 212 it is recommended to complete the course before attempting CS
212. Looking solely at final grades, however, we found that only 25.8% of students
taking CS 212 in 2015/2016 took CS 245 before CS 212. Of the students who had not
taken 245 or took it concurrently, 77.6% passed CS 212 with a C or better, and only
22.4% failed. More surprisingly, of the 25.8% of students who did complete 245 before
212, a sizable 53% failed and 47% passed. This is helpful information for CS advisors
and suggests that students are well served by taking CS 212 early in their program.

The final indirect measure we consider is the failure rate of CS majors versus non-
majors. Of the students who took the course in 2015/2016, 63.6% of them were CS
majors and, of those students, only 14.3% did not earn a passing grade. The remaining
36.7% of students were non-majors (many CS minors) and a surprisingly large 58.3% of
the non-majors did not earn a passing grade. One hypothesis is that non-majors are not
prepared for the amount of work the class requires.

Discussion and Closing the Loop

It is noteworthy that the results include data for some students who essentially quit
coming to class and submitting assignments part way through the semester however, for
a variety of reasons, were unable to withdraw from the course.

It is also noteworthy that the structure of the assignments did vary somewhat from fall to
spring. In the fall, the project associated with CLO3 included some additional complex
material that was not covered in the spring section. Though this material is
unquestionably valuable for the students, we experimented with leaving it out in the
spring and note that the number of students who were able to achieve the exceptional
rating increased because of the more narrow focus. We plan to reconsider whether the
CLOs should be updated to include the more complex material, or whether we should
leave it out of the curriculum for the course going forward.

The mastery learning approach results in a large percentage of students achieving the
exceptional rating for topics covered early in the semester with a significant falloff for
topics later in the semester. While this seems to indicate that students learn the early
topics better than they would if we used a traditional approach, it is difficult to say for
certain that is the case. Based on anecdotal observation, it would be informative to add
the following additional element to the rubric: the number of submissions required for the
student to demonstrate mastery. In some cases, students submit their work four or five
times. Each submission results in extensive feedback from, and often a one-on-one
meeting with, the instructor or teaching assistant. This extra help makes it difficult to
assess whether the student is mastering the concepts on his/her own or just applying the
recommendations made by the instructor.

Based on our indirect measures, we were both pleased and surprised to find that
students are not more likely to succeed in 212 if they take it later in their careers. This
reinforces the current structure of our program. It is clear, however, that non-majors
need to be carefully advised about the workload and expectations of the course. This
could suggest that we should look more carefully at the structure of our CS minor.

