1. **Overview Statement**: Briefly summarize the assessment activities that were undertaken this academic year, indicating:

 a. **Which program learning outcomes were assessed this year.**

 1A) Describe, synthesize and apply concepts & techniques in the current literature within a specific research area.
 1B) Ask scientific questions based upon the literature and construct research hypotheses and design experiments to test hypotheses.
 2A) Select and meet with graduate committee members. 2B) Conduct original research, demonstrating research skills within the specified research area and evaluate collected data.
 3) Prepare a written thesis to be reviewed and accepted by the graduate committee. The thesis will consist of the following sections: Introduction, Materials and Methods, Results, Discussion and References.
 4) Present findings in a public format accepted by the graduate committee members.

 b. **Who in your department/program was involved in the assessment of the above learning outcomes.**

 Jennifer Dever, Chair of graduate program and Thesis Advisor for graduate student Ryan Peek and Marissa Lafler
 Christina Tzagarakis-Foster, Thesis Advisor for graduate students Rowan Baginsky, Lhia Delores, and Sean Judge
 Juliet Spencer, Thesis Advisor for graduate student Angela Pletcher

2. **Please Answers the Following Questions for Each of the Student Outcomes Assessed:**

 a. **What did you do?**
 Describe clearly and concisely how you assessed the learning outcomes that were evaluated this year (e.g., measures, research methods, etc.). [please use bullet points to answer this question]

 There were six students enrolled in our program this year: four first year students (Rowan Baginsky, Sean Judge, Marissa Lafler and Angela Pletcher) and two second year students (Lhia Delores and Ryan Peek). To assess learning outcomes for these students the following assessment tools for each outcome were employed:

 Outcome #1 [1A) Describe, synthesize and apply concepts & techniques in the current literature within a specific research area. 1B) Ask scientific questions based upon the literature and construct research hypotheses and design experiments to test hypotheses.]
 Assessment tools for this outcome
 - Directed Reading (BIOL 695)
 - Seminar (BIOL 600)
The first-year students enrolled in BIOL 600 and 695.

A thesis proposal was written by graduate student Marissa Lafler and submitted to the following committee members for review: Jennifer Dever, Christina Tzagarakis-Foster and Scott Nunes. The student was advised by the committee members and upon revision the proposal was accepted by each member.

A thesis proposal was written by graduate student Sean Judge and submitted to the following committee members for review: Christina Tzagarakis-Foster, Mary Jane Niles and Juliet Spencer. The student was advised by the committee members and upon revision the proposal was accepted by each member.

A thesis proposal was written by graduate student Angela Pletcher and submitted to the following committee members for review: Juliet Spencer, Christina Tzagarakis-Foster and Pat Schultz. The student was advised by the committee members and upon revision the proposal was accepted by each member.

Rowan Baginsky presented a research poster at the Keystone Meeting in Colorado this Spring. Sean Judge presented a research poster at the Keystone Meeting in Colorado this Spring. Angela Pletcher submitted an abstract for Virology meeting in July. Ryan Peek gave a talk at the ASIH conference in June.

Outcome #2 [2A) Select and meet with graduate committee members. 2B) Conduct original research, demonstrating research skills within the specified research area and evaluate collected data.]

Assessment tools for this outcome
- Research performance – progress report, student evaluation form
- Directed Research (BIOL 698)
- Committee members assessment interview

Progress reports & student evaluation forms were submitted by each student and their major professor.

Second & third semester students were enrolled in BIOL 698.

Committee members met with students to assess their progress on their respective research project.

Outcome #3 [Prepare a written thesis to be reviewed and accepted by the graduate committee. The thesis will consist of the following sections: Introduction, Materials and Methods, Results, Discussion and References]

Assessment tools for this outcome
- Thesis Writing (BIOL 699)
- Thesis Outline
- Thesis
- Committee members assessment interview

Students in their final semester were enrolled in BIOL 699. Outlines and completed theses were submitted to committee members by these students.

Committee members Jennifer Dever, Christina Tzagarakis-Foster and David Saah met with Ryan Peek to discuss the thesis progress and provide feedback for revisions. They have accepted his thesis and rated it as “good”.

Outcome #4 [Present findings in a public format accepted by the graduate committee members.]
Assessment tools for this outcome
- Oral Presentation
- Exit Interview

- Ryan Peek presented his research findings to the department on May 13 as well as at a national conference in June.
- An exit interview was conducted by the graduate chair for both Ryan Peek (see attached documents).

b. What did the faculty in the department or program learn?
Summarize your findings and conclusions as a result of the assessment indicating strengths and weaknesses in student learning demonstrated by this assessment.

The department did not have sufficient time to discuss these findings; however the graduate committee was able to do so as well as each faculty member advising students (Jennifer Dever, Scott Nunes, John Sullivan, Christina Tzagarakis-Foster and Juliet Spencer). Students enrolled in the courses BIOL 600 (Seminar), 695 (Directed Readings), 698 (Directed Research) & 699 (Thesis Writing) each earned A’s for these courses exhibiting their strengths in learning in each area.

The student who has completed two semesters of the program has submitted her proposal to committee members who concluded that she had met outcome #1.
- Marissa Lafler earned an “Excellent” rating, his Research proposal submitted within the first year with clearly stated objectives; hypothesis highly supported by current literature. Research design is well defined and provides novel tests of problems. Proposal put forth relevant scientific questions that are highly significant to the field. Her strengths in completing tasks in a timely fashion and demonstrating a thorough understanding of her research project were exhibited.

Students conducting research also met outcome #2.
- Ryan Peek demonstrated “Excellent Achievement”, having completed the following: Regular meetings held to discuss research design. Research conducted independently, standard methods mastered and student receives good progress reports regarding lab/research performance. Data generated and analyzed.
- Marissa Lafler, Sean Judge and Angela Pletcher each demonstrated “Good Achievement”, having completed the following: thesis committee formed, proposal submitted and accepted, standard methods mastered and student receives good progress reports regarding lab/research performance. Data generated and analyzed.
- Rowan Baginsky demonstrated “Satisfactory Achievement”, he has not yet formed a thesis committee but his Research conducted independently, standard methods mastered and student receives good progress reports regarding lab/research performance. Data generated and analyzed.

Second year students met outcomes #3 & #4.
- Ryan met outcome #3 with a “Good” rating. Thesis outline submitted to graduate committee. Preliminary draft and final draft submitted to graduate committee submitted in a timely fashion. Regular meetings to discuss thesis progress with graduate committee held. Thesis complete including a comprehensive review of prior research; describes the research design; materials and methods used in the research; the findings in the described research; a summary of the findings with conclusions, implications for further research and significance of research. Thesis well written, error free and minimal revisions needed. All committee members highly satisfied. Portion of thesis submitted for publication. Final thesis approved by Graduate Chair.
- Ryan met outcome #4 with a “Excellent” rating - Thesis presentation is outstanding, student demonstrates an excellent ability to convey the research at both the scientific and general public level.
Audience able to grasp the significance of the research and how it adds to the current body of science in the particular field. Data presented at a scientific meeting ASIH, (presentation) generating inquiry from peers.

The graduate committee found that these assessment tools were adequate methods to measure the learning outcomes for the students enrolled in our research-based graduate program. Each students’ thesis committee members are able to advise students directly and assess their progress through each step: thesis proposal, research, oral presentation and completed written thesis. An exit interview was given to graduating student Ryan Peek (see attached). From the results of this interview it is clear that we are meeting our program goals.

c. **What will be done differently as a result of what was learned?**
Discuss how courses and/or curricula will be changed to improve student learning as a result of the assessment. Include a discussion of how the faculty will help students overcome their weaknesses and improve their strengths.

No curricula changes will be adopted next year.

3. **Attach a copy of the components of the department/program assessment plan that have been modified since its initial submission:**
No documents have been modified since last year.
a. Program Mission
The Biology Master's degree program at the University of San Francisco is a research based program in which the student undertakes an active research project that culminates in a formal written thesis. A student who successfully completes the program will be well prepared to enter into a technical position in a related research or industrial laboratory or to continue further postgraduate work (e.g., Ph.D. or M.D.).

b & c. Program Learning Goals / Program Learning Outcomes

BIOLOGY GRADUATE PROGRAM GOALS, OUTCOMES & ASSESSMENT

<table>
<thead>
<tr>
<th>PROGRAM GOAL</th>
<th>OUTCOME</th>
</tr>
</thead>
</table>
| Demonstrate an advanced knowledge in the areas of biology relevant to selected research interests and be able to identify research questions on a contemporary issue within the area, (as well as) critically analyze the relevant literature. | A) Describe, synthesize and apply concepts & techniques in the current literature within a specific research area.
B) Ask scientific questions based upon the literature and construct research hypotheses and design experiments to test hypotheses. |

<table>
<thead>
<tr>
<th>PROGRAM GOAL</th>
<th>OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate an ability to apply knowledge through critical thinking, inquiry, analysis, and communication in the form of a Master’s thesis which includes a rationale for the research project, a comprehensive review of prior research; describes the research design; materials and methods used in the research; the findings in the described research; a summary of the findings with conclusions, implications for further research and the impact and significance of the research completed.</td>
<td>Prepare a written thesis to be reviewed and accepted by the graduate committee. The thesis will consist of the following sections: Introduction, Materials and Methods, Results, Discussion and References.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROGRAM GOAL</th>
<th>OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present and discuss orally the justification for the research, hypothesis tested, materials and methods used, findings with conclusions and implications for further research; as well as the relevance of the research to the general field of interest in a public format in front of peers.</td>
<td>Present findings in a public format accepted by the graduate committee members.</td>
</tr>
</tbody>
</table>

d. Program Learning Rubrics aligned with outcomes

BIOLOGY GRADUATE PROGRAM PERFORMANCE RUBRIC

<table>
<thead>
<tr>
<th>OUTCOME</th>
<th>Unacceptable</th>
<th>Needs Improvement</th>
<th>Satisfactory</th>
<th>Good Achievement</th>
<th>Excellent Achievement</th>
</tr>
</thead>
</table>
| A) Describe, synthesize and apply concepts & techniques in the current literature within a specific research area.
B) Ask scientific questions based upon the literature and construct research hypotheses and design experiments to test | Research proposal incomplete; objectives not stated; research design not discernible from text or not scientifically testable. | Research proposal submitted with substantial revisions needed. Limited level of background information provided, objectives unclear. | Research proposal submitted, objectives stated and supported by current literature, research project is justifiable with a testable hypothesis and | Research proposal submitted within the first year with clearly stated objectives that are highly supported by current literature. Hypothesis is | Research proposal submitted within the first year with clearly stated objectives; hypothesis highly supported by current literature. Research design is well defined and provides novel test(s) of problem(s). Proposal puts forth relevant scientific |
A) Select and meet with graduate committee members. B) Conduct original research, demonstrating research skills within a specific research area and evaluate collected data.

| A) Select and meet with graduate committee members. B) Conduct original research, demonstrating research skills within a specific research area and evaluate collected data. | Thesis outline not submitted to graduate committee. No meeting with committee members to discuss progress. Thesis incomplete with one or more sections not complete; does not follow standard formatting. | Thesis outline submitted to graduate committee. Preliminary draft and final draft submitted to graduate committee not submitted in a timely fashion. Minimal meetings to discuss thesis progress with graduate committee not held. Thesis complete including a review of prior research; describes the research design; materials and methods used in the research; the findings in the described research; a summary of the findings with conclusions; however part or all is found to be unacceptable by one or more committee members. Major revisions needed. | Thesis outline submitted to graduate committee. Preliminary draft and final draft submitted to graduate committee held. Thesis complete, including a comprehensive review of prior research; describes the research design; materials and methods used in the research; the findings in the described research; a summary of the findings with conclusions, implications for further research and significance of research. Moderate revisions needed as recommended by committee members. Final thesis approved by Graduate Chair. | Thesis outline submitted to graduate committee. Preliminary draft and final draft submitted to graduate committee submitted in a timely fashion. Regular meetings to discuss thesis progress with graduate committee held. Thesis complete including a highly comprehensive review of prior research; describes the research design; materials and methods used in the research; the findings in the described research; a summary of the findings with conclusions and implications for further research. Significance of findings clearly stated and highly relevant. Thesis well written, error free with no revisions needed. Portion of thesis accepted for publication in a peer-reviewed journal. Final thesis approved by Graduate Chair. |
Present findings orally in a public format accepted by research committee members. No practice session held with committee members. No presentation performed, data not presented.

Committee members recommend major changes at practice session prior to final presentation. Presentation performed at unsatisfactory level, lasting too long or not long enough. Unsatisfactory amount of background information, materials and methods and/or conclusions provided. Speech and/or slides difficult for the audience to understand.

Prior practice session for committee members acceptable. Presentation performed to the department, with enough time given to adequately present the information in a basic scientific format. Background information, objectives, materials and methods, findings and conclusions clearly described. Presentation is clear and concise and understood by the audience.

Presentation performed in front of the department. Presentation is captivating and easily understood, while maintaining a scientific format. Background information, objectives, materials and methods, findings, conclusions and relevance described in a highly informative and engaging manner. Material presented is shown to be relevant to the current field of research. Data presented at a scientific meeting (poster/presentation) generating inquiry from peers.

e. Curriculum map that shows the courses that pertain to the outcome.

BIOLOGY GRADUATE PROGRAM CURRICULUM MAP

<table>
<thead>
<tr>
<th>LEARNING OUTCOMES</th>
<th>COURSES*</th>
<th>GRADUATE SEMINAR (BIOL 600)</th>
<th>RESEARCH (BIOL 698)</th>
<th>THESIS WRITING (BIOL 699)</th>
<th>ORAL PRESENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Describe, synthesize and apply concepts & techniques identified in the current literature within a specific research area.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>B) Ask scientific questions based upon the literature and construct research hypotheses and design experiments to test hypotheses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) Select and meet with graduate committee members.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>B) Conduct original research, demonstrating research skills within a specific research area and evaluate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
collected data.

| Prepare a thesis outline and a written thesis to be reviewed and accepted by graduate committee members. The thesis will consist of the following sections: Introduction, Materials and Methods, Results, Discussion and References. | X |
| Present findings in a public format accepted by research committee members. | X |

Students can choose from any of the upper division biology courses offered (or courses from other departments provided they directly relate to the thesis research). As these are primarily undergraduate courses, the graduate students will be required to complete extra work and in cases where exams are given, they will be expected to answer different questions in a more in-depth fashion.
f. Exit interviews from graduating students

Graduate Program Assessment:
Exit Interview – MATT BOITANO – S09

Please answer the following questions:

1. In what ways, if any, has your course work been valuable to you? How are courses you've taken during your program related to your thesis project?

I took Endocrinology and Immunology while a graduate student at USF. Both classes were very valuable to me because I did not have the chance to take them as an undergraduate. I also got much more out of these classes than when I was an undergraduate because they were the only classes I was taking so I could put more time into them. Endocrinology was directly related to my thesis project because I am working with molecular endocrinology. It was a good course to tie in lab learning with classroom learning.

2. How has your research training been valuable to you? What skills have you developed while in the graduate program?

I have learned an entire list of new molecular skills that will no doubt help me in the future. I also had the chance to work and get comfortable with mammalian tissue cultures.

3. What are the best things that the graduate degree has done to prepare you for a profession? Have you learned things in courses that you've used outside of the academic environment?

Working at USF as a graduate student has made me much more independent and, with that, a much better problem solver and troubleshooter. I have matured academically and become more patient and can use these in either my professional or personal life.

4. Other than acquiring coursework and research experience state how the graduate program has changed you or your perspectives on life.

The graduate program has really giving me direction. I know what I want to do when I graduate and I know what I don't want to do.

5. In what ways have you actively participated in the university learning community? As you think over your graduate career, what learning experiences stand out in your mind? What learning experiences have you had outside of the classroom?

I participated in university learning by being a TA for freshman bio and for genetics. I also feel I contributed to the learning community by presenting data at joint lab group meetings and guiding and aiding undergraduates in the lab.

6. During your degree program, was advising sufficient and appropriate?

Yes, available whenever I needed it.

7. Did you have adequate guidance in completing your proposal and thesis?

Yes.

8. What do you think are the strengths and weaknesses of the program?
I think a huge strength of this program is the size of the school. Graduate students are few and so are undergrads, which gives more time for one on one time with professors and advisors, and these professors and advisors truly care about your education. Also, normally with small size comes lack luster facilities, however USF relative to its size has so much to offer to a biology graduate student.

A weakness of the program is that there is no graduate only classes, i.e. a graduate level genetics class.

9. Do you have a job, medical school or Ph.D. program in the biological sciences lined up, or are you planning on staying in the biological sciences.
I am planning on getting a job in research.

10. Do you have any additional comments about the program or USF?
none

Graduate Program Assessment:
Exit Interview – MIKAEL LANGER – S09

Please answer the following questions:

1. In what ways, if any, has your course work been valuable to you? How are courses you've taken during your program related to your thesis project?

 My coursework instilled valuable information into my knowledge framework, which will enable a lifelong pursuit of further knowledge. My neuroscience and physiology courses taken during my program are related to the maternal behavior of *Spermophilus beldingi*: behavior is a substudy of neuroscience and reproductive endocrinology is a subtopic of physiology.

2. How has your research training been valuable to you? What skills have you developed while in the graduate program?

 My graduate training has instilled valuable experiences into my life journey, which will enable me to look forward with excitement to my future career and backward to a collection of important and formative experiences.

3. What are the best things that the graduate degree has done to prepare you for a profession? Have you learned things in courses that you've used outside of the academic environment?

 The best thing the graduate degree has done to prepare me for a profession is to develop a theoretical framework upon which further knowledge and experiential development can occur. On a daily basis, I use what I learned in courses. Every time I make a decision or perform an action, I do so through the lens of my graduate experience.

4. Other than acquiring coursework and research experience state how the graduate program has changed you or your perspectives on life.

 Other than coursework, I have had the opportunity to meet mentors and learn how academic researchers live their life outside the classroom. This experience is important to me because this aspect of academic life was a “black box” to me prior to these experiences.
5. In what ways have you actively participated in the university learning community? As you think over your graduate career, what learning experiences stand out in your mind? What learning experiences have you had outside of the classroom?

I am a member of the Club for Neuroscience Students. Probably the most important learning experience was camping. It provided me the opportunity to learn about myself.

6. During your degree program, was advising sufficient and appropriate?

Yes, advising was sufficient.

7. Did you have adequate guidance in completing your proposal and thesis?

Yes, guidance in completing my proposal and thesis has been appropriate from my thesis committee. We have a schedule for completion which makes it easier. Committee members have made valuable comments about my thesis.

8. What do you think are the strengths and weaknesses of the program?

Strengths: courses (small class size), mentoring, research, camping.

Weaknesses: no stipend (but not technically a weakness as I know of this fact prior to beginning program).

9. Do you have a job, medical school or Ph.D. program in the biological sciences lined up, or are you planning on staying in the biological sciences.

I am currently a research associate in the dermatology lab of Dr. Howard Maibach at UCSF through November, 2009.

10. Do you have any additional comments about the program or USF?

Thanks for all your help and support.
EXIT INTERVIEW – RYAN PEEK, Aug. 18, 2010

Please answer the following questions:
1. In what ways, if any, has your course work been valuable to you? How are courses you've taken during your program related to your thesis project?

I think the Electron Microscopy class was excellent, although not particularly applicable to my direct research. It did provide a solid foundation in using microscopy, as well as specimen preparation, which may be useful in the future. I think the Advanced Molecular Biology Techniques class was directly valuable because it provided a solid foundation in lab etiquette and procedures, some of which I used extensively, and others I will probably not use at all. Nonetheless, the course was rigorous enough (for a person with more of a wildlife/macrobiology background) so that I learned a fair amount and enjoyed the lab components of the course. The seminar in Biology was also interesting and somewhat useful in that it forced me to read papers that were completely outside of my realm of study.

I would say one of the most useful courses I took was the ArcGIS course...although it was basic it was a great overview and will be a big plus on job applications and resumes. Much of what I learned in the course was very applicable to my landscape connectivity analysis, and the map-creation techniques I learned in the course were great practice prior to creating my own figures and maps for my thesis.

2. How has your research training been valuable to you? What skills have you developed while in the graduate program?

The ability to work independently yet collaboratively has been invaluable. The lab research training I've received at USF has been great, and I hope it serves me well in the future. It is definitely something I've not had much experience with, and now that I feel I have a decent amount of genetics lab research experience, I think it will greatly expand my ability to work in a variety of fields. Tissue digestion, DNA extraction, PCR, electrophoresis, and molecular analysis have been skills I've developed while at USF. Nearly all are very ubiquitous in the field of genetics, so I hope I will be able to apply these skills elsewhere. I also think I've learned a great deal about setting up experiments in a precise and organized way. I've always felt I'm fairly organized and meticulous, but the research I conducted really forced me to improve in those areas, which was great.
3. What are the best things that the graduate degree has done to prepare you for a profession? Have you learned things in courses that you've used outside of the academic environment?

I've been able to collaborate with some great research scientists at UC Davis and UC Berkeley, which I wouldn't have been able to do had I not been in the program at USF. I was able to build on my existing connections and really expand my research (and improve it). I don't think I've had the opportunity to apply the coursework I've completed in the "outside" world, largely because it has been very lab focused, and much of my work/experience outside of academia is rarely in a lab setting. Particularly as a graduate student, the number of courses available is quite limited within the biology department, and they aren't truly graduate courses, rather upper division courses available for graduate credit. I think this is part of a larger issue, there are many great graduate programs at USF, and many would do well to integrate and provide more interdisciplinary coursework/collaboration, but there seems to be little communication between departments, and no community for graduate students to be a part of (unless you are a nursing, law, or business student, but even these programs are quite segregated). There were a number of courses in the environmental science/management program I would have like to take, which would have been very applicable for me outside of academia, but I didn't find out about them until later in my graduate degree, at which point it was not possible to take them. Future scientists and graduate professionals should be able to integrate multiple disciplines, and USF should do a better job to encourage this. The resources are available, there simply needs to be a more focused push to build a better graduate student network across campus departments.

4. Other than acquiring coursework and research experience state how the graduate program has changed you or your perspectives on life.

I realized I still really like working in rivers and studying frogs even after I spent countless hours in a lab and in the field catching them. As far as my perspective on life, I feel like the more I learn the less I know. I find it depressing that my research was largely focused on how we are continuing to screw up the environment we live in, and wish there were more discrete answers on how to remedy that fact. Education and research is one, but a large swath of the population doesn't fit into that category. On a more positive note, I realized I really enjoy teaching, and I'm glad I had the opportunity to TA the Gen. Biology lab, because I learned a lot about teaching and managing a classroom.
5. In what ways have you actively participated in the university learning community? As you think over your graduate career, what learning experiences stand out in your mind? What learning experiences have you had outside of the classroom?

I've tried to involve undergraduates in my research as much as possible, and the help I received from several dedicated undergraduates was truly invaluable for completion of my thesis research. In return I hope they learned a bit about research and lab work for future endeavors. I enjoyed visiting the research component of the Cal. Acad. of Sciences with my advisor, it was interesting to see what sorts of things they do, and what sort of research Dr. Dever has been involved in. I also attended some of the optional sessions with potential professor candidates when they were interviewing on campus, and was glad to have the opportunity to both speak with them and provide feedback to the faculty involved in the hiring.

6. During your degree program, was advising sufficient and appropriate?

Advising was great, kept me on track and focused without being overbearing or overinvolved. I felt I had a path I could take that was recommended and approved, and if I followed the path I would graduate in 2 years with a masters! Well done.

7. Did you have adequate guidance in completing your proposal and thesis?

Definitely. My advisor Dr. Jen Dever was excellent, she provided great feedback and still gave me the latitude to pursue my own research goals and objectives. She was also good about encouraging me despite the pitfalls and setbacks that occurred. I appreciated her ability to provide feedback in a timely manner, meet with me whenever I had questions or concerns, and still allow me the independence to both make mistakes and complete solid research.

8. What do you think are the strengths and weaknesses of the program?

I may have spoken a bit too early about these in question 3. In short, I think the strengths are personal attention and resources for each graduate student, including dept. funding for conferences and research. This is really unique for a graduate program. Also the fact that tuition is waived for biology students was a HUGE component in my decision to attend USF over other graduate programs. Not only did I
feel I would receive a good education, but I could afford to make it happen because of the tuition waiver. It definitely helps make the program more competitive. I think for a very small department there is a lot of great lab space and cutting edge equipment, a definite plus.

As far as weaknesses, I think as I mentioned above that there needs to be more of a graduate community for sharing ideas and discussion of research, whether that is in the same field or not. I think one of the downsides to the program is that it is so small, and there are so few graduate students. If I didn’t have previous contacts with researchers and graduate students in my field of study, I would have felt a bit isolated and out of place (particularly as a wildlife biologist doing molecular research not related to cancer/human genetics). Thankfully I had prior connections with folks I could discuss my research with and get some excellent feedback from. I think this is a huge component of research, and if you don’t have someone to talk over your ideas with (aside from your advisor), it can be difficult to move forward with any sense of direction.

9. Do you have a job, medical school or Ph.D. program in the biological sciences lined up, or are you planning on staying in the biological sciences.

I hope to remain in the biological sciences, and I am considering pursuing a PhD program, although I am applying to a variety of biology/research positions.

10. Do you have any additional comments about the program or USF?

Overall I had a very good experience, and were I to choose again, I would likely still choose USF. For a small school it provided a great number of opportunities, and the faculty and staff I worked with were very supportive and helpful throughout my time at USF. I hope and advocate for future graduate students, that more dedicated graduate coursework will be provided, and the graduate student community will be a priority, as I think it would help students challenge each other and also provide a support network that is direly needed to make graduates successful.