
1 | P a g e

ASSESSMENT REPORT
ACADEMIC YEAR 2020 – 2021

I. LOGISTICS

1. Please indicate the name and email of the program contact person to whom feedback should be sent

(usually Chair, Program Director, or Faculty Assessment Coordinator).

Alark Joshi, apjoshi@usfca.edu, Chair of CS dept.

EJ Jung, ejung2@usfca.edu, Faculty Assessment Coordinator of CS dept.

2. Please indicate if you are submitting report for (a) a Major, (b) a Minor, (c) an aggregate report for a

Major & Minor (in which case, each should be explained in a separate paragraph as in this template), (d)

a Graduate or (e) a Certificate Program

 (d) Graduate

3. Please note that a Curricular Map should accompany every assessment report. Has there been any

revisions to the Curricular Map?

 No. The curricular map is attached.

II. MISSION STATEMENT & PROGRAM LEARNING OUTCOMES

1. Were any changes made to the program mission statement since the last assessment cycle in October

2020? Kindly state “Yes” or “No.” Please provide the current mission statement below. If you are

submitting an aggregate report, please provide the current mission statements of both the major and the

minor program

No changes were made.

 <Computer Science/Bridge program>

mailto:apjoshi@usfca.edu
mailto:ejung2@usfca.edu

2 | P a g e

The mission of the MS in Computer Science Bridge program is:

To prepare students for Master’s in Computer Science at USF who are changing fields

from non-computer science backgrounds and to give students who do not have a

computer science background enough knowledge to do basic software development.

2. Were any changes made to the program learning outcomes (PLOs) since the last assessment cycle in

October 2020? Kindly state “Yes” or “No.” Please provide the current PLOs below. If you are submitting

an aggregate report, please provide the current PLOs for both the major and the minor programs.

No. Each learning outcome is marked with which AY it was evaluated. Please note that

the MSCS Bridge program started in AY 17-18, so we do not have any assessment

history before then.

Students who pass the bridge program and proceed to the MS in Computer Science will

be able to:

• Application: Implement medium- and large-scale programs in a variety of

programming languages. (evaluated in AY18-19)

• Theory: Explain and analyze standard computer science algorithms (evaluated

in AY 17-18)

• Systems: Describe the interactions between low-level hardware, operating

systems, and applications (evaluated in AY20-21)

3. State the particular Program Learning Outcome(s) you assessed for the academic year 2020-2021.

Systems: Describe the interactions between low-level hardware, operating systems,

and applications

III. METHODOLOGY

Describe the methodology that you used to assess the PLO(s).

We used a direct method. CS 521 Systems Programming is a required course for the

Bridge students. (Please note that CS 521 ran as CS 686 Special Topics in Computer

Science in Spring 2021 while the course number was getting approved in Curriculog.)

3 | P a g e

We used the second programming project in CS 521 to assess if students met this

learning outcome. In this programming project, the students not only described but also

demonstrated their understanding of the interactions between low-level hardware,

operating systems and applications by implementing a program that relies on such

interactions, using system calls, do low-level I/O, launch applications and facilitate

communication between them via pipes. The project description and the rubric are

attached.

IV. RESULTS & MAJOR FINDINGS

What are the major takeaways from your assessment exercise?

Level Percentage of Students

Complete Mastery of the outcome 71% (12/17)

Mastered the outcome in most parts 24% (4/17)

Mastered some parts of the outcome 5% (1/17)

Did not master the outcome at the level

intended

0% (0/17)

The vast majority (16 out of 17) of the students mastered the outcome in most parts. 1

student only mastered some parts of this outcome at the time of this project, but upon

further investigation we learned that the student was able to master the outcome later

in the semester and demonstrated the mastery in the exam. (Please note that the

learning outcome expects the student to be able to describe, not necessarily implement,

so the exam is a direct method as well.) This student was able to pass the course and is

doing well in the MSCS courses. This is not uncommon in the bridge program, where

students with non-CS background learn to code for the first time and some students

take longer to reach the mastery. CS faculty is committed to supporting such students

in our Bridge program.

V. CLOSING THE LOOP

4 | P a g e

1. Based on your results, what changes/modifications are you planning in order to achieve the desired level

of mastery in the assessed learning outcome? This section could also address more long-term planning that

your department/program is considering and does not require that any changes need to be implemented

in the next academic year itself.

It is assuring that the students who pass this course fulfills the program’s learning

outcome properly and continue to the Master’s program. This is the third cohort of the

Bridge program, and students who successfully finished our Bridge program are making

good progress in their Master’s Program. Our first cohort recently graduated and many of

them were hired before graduation. We will continue to track their achievements and

revise the curriculum if necessary.

The report is shared with the CS faculty, especially with the department chair, the

graduate program director and the graduate program manager to keep them informed

with the learning outcome achievement.

2. What were the most important suggestions/feedback from the FDCD on your last assessment report (for

academic year 2019-2020, submitted in December 2020)? How did you incorporate or address the

suggestion(s) in this report?

In AY 2019-2020, we used alternative assessment checking on how the CS faculty and

the students are adapting to the remote courses. We used the feedback from the survey

to increase the online social activities to foster the sense of belonging, and the activities

were well-received.

Project 2: Command Line Shell (v 1.0)
Starter repository on GitHub: https://classroom.github.com/a/_x-WbepJ

The outermost layer of the operating system is called the shell. In Unix-based systems, the

shell is generally a command line interface. Most Linux distributions ship with bash as the

default (there are several others: csh , ksh , sh , tcsh , zsh). In this project, we’ll be

implementing a shell of our own.

You will need to come up with a name for your shell first. The only requirement is that the name

ends in ‘sh’, which is tradition in the computing world. In the following examples, my shell is

named crash (Cool Really Awesome Shell) because of its tendency to crash.

The Basics

Upon startup, your shell will print its prompt and wait for user input. Your shell should be able

to run commands in both the current directory and those in the PATH environment variable

(run echo $PATH to see the directories in your PATH). The execvp system call will do most

of this for you. To run a command in the current directory, you’ll need to prefix it with ./ as

usual. If a command isn’t found, print an error message:

[

!

]─[1]─[mmalensek@gamestop:~/P2-malensek]$./hello
Hello world!

[

!

]─[2]─[mmalensek@gamestop:~/P2-malensek]$ ls /usr
bin include lib local sbin share src

[

!

]─[3]─[mmalensek@gamestop:~/P2-malensek]$ echo hello there!
hello there!

[

!

]─[4]─[mmalensek@gamestop:~/P2-malensek]$./blah
crash: no such file or directory: ./blah

[

"

]─[5]─[mmalensek@gamestop:~/P2-malensek]$ cd /this/does/not/exist
chdir: no such file or directory: /this/does/not/exist

[

"

]─[6]─[mmalensek@gamestop:~/P2-malensek]$

https://classroom.github.com/a/_x-WbepJ

Prompt

The shell prompt displays some helpful information. At a minimum, you must include:

Command number (starting from 1)

User name and host name: (username)@(hostname) followed by :
The current working directory

Process exit status

In the example above, these are separated by dashes and brackets to make it a little easier to

read. The process exit status is shown as an emoji: a smiling face for success (exit code 0)

and a sick face for failure (any nonzero exit code or failure to execute the child process). For

this assignment, you are allowed to invent your own prompt format as long as it has the

elements listed above. You can use colors, unicode characters, etc. if you’d like. For instance,

some shells highlight the next command in red text after a nonzero exit code.

You will format the current working directory as follows: if the CWD is the user’s home

directory, then the entire path is replaced with ~ . Subdirectories under the home directory

are prefixed with ~ ; if I am in /home/mmalensek/test , the prompt will show ~/test .

Here’s a test to make sure you’ve handled ~ correctly:

Scripting

Your shell must support scripting mode to run the test cases. Scripting mode reads

[

!

]─[6]─[mmalensek@gamestop:~]$ whoami
mmalensek

[

!

]─[7]─[mmalensek@gamestop:~]$ cd P2-malensek

Create a directory with our full home directory in its path:
Must use the username outputted above from whoami)
[

!

]─[8]─[mmalensek@gamestop:~/P2-malensek]$ mkdir -p /tmp/home/mmalensek/

[

!

]─[9]─[mmalensek@gamestop:~/P2-malensek]$ cd /tmp/home/mmalensek/test

Note that the FULL path is shown here (no ~):
[

!

]─[10]─[mmalensek@gamestop:/tmp/home/mmalensek/test]$ pwd
/tmp/home/mmalensek/test

commands from standard input and executes them without showing the prompt.

You should check and make sure you can run a large script with your shell. Note that the script

should not have to end in exit .

To support scripting mode, you will need to determine whether stdin is connected to a

terminal or not. If it’s not, then disable the prompt and proceed as usual. Here’s some sample

code that does this with isatty :

#include <stdio.h>
#include <unistd.h>

int main(void) {

 if (isatty(STDIN_FILENO)) {
 printf("stdin is a TTY; entering interactive mode\n");
 } else {
 printf("data piped in on stdin; entering script mode\n");
 }

 return 0;
}

Since the readline library we’re using for the shell UI is intended for interactive use, you will

need to switch to a traditional input reading function such as getline when operating in

scripting mode.

When implementing scripting mode, you will likely need to close stdin on the child process

if your call to exec() fails. This prevents infinite loops.

cat <<EOM | ./crash
ls /
echo "hi"
exit
EOM

Which outputs (note how the prompt is not displayed):
bin boot dev etc home lib lost+found mnt opt proc root run sbin srv sys tmp usr var
hi

Another option (assuming commands.txt contains shell commands):
./crash < commands.txt
(commands are executed line by line)

Built-In Commands

Most shells have built-in commands, including cd and exit . Your shell must support:

cd to change the CWD. cd without arguments should return to the user’s home

directory.

(comments): strings prefixed with # will be ignored by the shell

history , which prints the last 100 commands entered with their command numbers

! (history execution): entering !39 will re-run command number 39, and !! re-runs

the last command that was entered. !ls re-runs the last command that starts with ‘ls.’

Note that command numbers are NOT the same as the array positions; e.g., you may

have 100 history elements, with command numbers 600 – 699.

jobs to list currently-running background jobs.

exit to exit the shell.

Signal Handling

Your shell should gracefully handle the user pressing Ctrl+C:

[

!

]─[11]─[mmalensek@gamestop:~]$ hi there oh wait nevermind^C

[

!

]─[11]─[mmalensek@gamestop:~]$ ^C

[

!

]─[11]─[mmalensek@gamestop:~]$ ^C

[

!

]─[11]─[mmalensek@gamestop:~]$ sleep 100
^C

[

"

]─[12]─[mmalensek@gamestop:~]$ sleep 5

The most important aspect of this is making sure ^C doesn’t terminate your shell. To make

the output look like the example above, in your signal handler you can (1) print a newline

character, (2) print the prompt only if no command is currently executing, and (3)

fflush(stdout) .

History

Here’s a demonstration of the history command:

[

!

]─[142]─[mmalensek@gamestop:~]$ history
 43 ls -l
 43 top
 44 echo "hi" # This prints out 'hi'

... (commands removed for brevity) ...

 140 ls /bin
 141 gcc -g crash.c
 142 history

In this demo, the user has entered 142 commands. Only the last 100 are kept, so the list starts

at command 43. If the user enters a blank command, it should not be shown in the history or

increment the command counter. Also note that the entire, original command line string is

shown in the history – not a tokenized or modified string. You should store history commands

exactly as they are entered (hint: use strdup to duplicate and store the command line

string). The only exception to this rule is when the command is a history execution (bang)

command, e.g., !42. In that case, determine the corresponding command line and place it in

the history (this prevents loops).

I/O Redirection

Your shell must support file input/output redirection:

Create/overwrite 'my_file.txt' and redirect the output of echo there:
[

!

]─[14]─[mmalensek@gamestop:~]$ echo "hello world!" > my_file.txt
[

!

]─[15]─[mmalensek@gamestop:~]$ cat my_file.txt
hello world!

Append text with '>>':
[

!

]─[16]─[mmalensek@gamestop:~]$ echo "hello world!" >> my_file.txt
[

!

]─[17]─[mmalensek@gamestop:~]$ cat my_file.txt
hello world!
hello world!

Let's sort the /etc/passwd file via input redirection:
[

!

]─[18]─[mmalensek@gamestop:~]$ sort < /etc/passwd > sorted_pwd.txt

Order of < and > don't matter:
[

!

]─[19]─[mmalensek@gamestop:~]$ sort > sorted_pwd.txt < /etc/passwd

Here's input redirection by itself (not redirecting to a file):
[

!

]─[20]─[mmalensek@gamestop:~]$ sort < sorted_pwd.txt

Use dup2 to achieve this; right before the newly-created child process calls execvp , you

will open the appropriate files and set up redirection with dup2 .

Background Jobs

If a command ends in & , then it should run in the background. In other words, don’t wait for

the command to finish before prompting for the next command. If you enter jobs , your shell

should print out a list of currently-running backgrounded processes (use the original

command line as it was entered, including the & character). The status of background jobs is

not shown in the prompt.

To implement this, you will need:

A signal handler for SIGCHLD . This signal is sent to a process any time one of its

children exit.

A non-blocking call to waitpid in your signal handler. Pass in pid = -1 and

options = WNOHANG .

This tells your signal handler the PID of the child process that exited. If the PID is in

your jobs list, then it can be removed.

The difference between a background job and a regular job is simply whether or not a blocking

call to waitpid() is performed. If you do a standard waitpid() with options = 0 , then

the job will run in the foreground and the shell won’t prompt for a new command until the child

finishes (the usual case). Otherwise, the process will run and the shell will prompt for the next

command without waiting.

NOTE: your shell prompt output may print in the wrong place when using background jobs.

This is completely normal.

The readline library

We’re using the readline library to give our shell a basic “terminal UI.” Support for moving

through the current command line with arrow keys, backspacing over portions of the

(sorted contents shown)

command, and even basic file name autocompletion are all provided by the library. The details

probably aren’t that important, but if you’re interested in learning more about readline its

documentation is a good place to start.

Hints

Here’s some hints to guide your implementation:

execvp will use the PATH environment variable (already set up by your default shell) to

find executable programs. You don’t need to worry about setting up the PATH yourself.

Check out the getlogin , gethostname , and getpwuid functions for constructing

your prompt.

Don’t use getwd to determine the CWD – it is deprecated on Linux. Use getcwd
instead.

For the cd command, use the chdir syscall.

To replace the user home directory with ~ , some creative manipulation of character

arrays and pointer arithmetic can save you a bit of work.

Testing Your Code

Check your code against the provided test cases. You should make sure your code runs on

your Arch Linux VM. We’ll have interactive grading for projects, where you will demonstrate

program functionality and walk through your logic.

Submission: submit via GitHub by checking in your code before the project deadline.

Grading

20 pts - Passing the test cases

4 pts - Code review:

Prompt, UI, and general interactive functionality. We’ll run your shell to test this with

a few commands.

Code quality and stylistic consistency

Functions, structs, etc. must have documentation in Doxygen format (similar to

https://tiswww.case.edu/php/chet/readline/readline.html
http://www.doxygen.nl/
EJ Jung
(Rubric)

EJ Jung
(The test cases were provided on the Github as part of the project template)

Javadoc). Describe inputs, outputs, and the purpose of each function. NOTE: this is

included in the test cases, but we will also look through your documentation.

No dead, leftover, or unnecessary code.

You must include a README.md file that describes your program, how it works,

how to build it, and any other relevant details. You’ll be happy you did this later

if/when your revisit the codebase. Here is an example README.md file.

Restrictions: you may use any standard C library functionality. Other than readline ,

external libraries are not allowed unless permission is granted in advance (including the GNU

history library). Your shell may not call another shell (e.g., running commands via the

system function or executing bash , sh , etc.). Do not use strtok to tokenize input. Your

code must compile and run on your VM set up with Arch Linux as described in class. Failure to

follow these guidelines will will result in a grade of 0.

Changelog

Initial project specification posted (3/17)

https://www.cs.usfca.edu/~mmalensek/cs521/schedule/materials/kylie-readme.html

PLO
1

PLO
2

PLO
3

Program
 Learning O

utcom
es X Courses

TH
E

O
R

Y
: E

xplain and analyze
standard com

puter science algorithm
s

and describe and analyze theoretical
aspects of various program

m
ing

languages.

A
P

P
LIC

A
TIO

N
: A

pply problem
-

solving skills to im
plem

ent m
edium

-
and large- scale program

s in a
variety of program

m
ing languages.

S
Y

S
TE

M
S

: D
escribe the

interactions betw
een low

-level
hardw

are, operating system
s,

and applications.

Courses or Program
 Requirem

ent

CS 514 Accelerated O
bject O

riented Program
m

ing
I/D

D

SYSTEM
S:

CS 520 Introduction to Parallel Com
puting

D
D

THEO
RY:

M
ath 501 Discrete M

athem
atics

D

CS 545 Data Structures and Algorithm
s

M
D

APPLICATIO
N

S:

CS Elective
M

CS Practicum
: Practical Industry or Research Experience

M

Key:

I = Introductory

D = Developing

M
 = M

astery

	2. What were the most important suggestions/feedback from the FDCD on your last assessment report (for academic year 2019-2020, submitted in December 2020)? How did you incorporate or address the suggestion(s) in this report?

